

概述

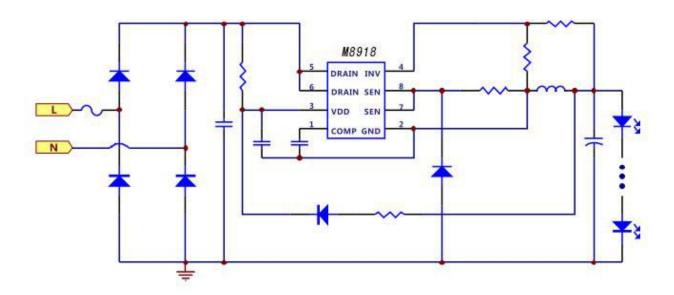
M8918是一款带有源功率因数校正的高精度降压型 LED 恒流控制芯片,适用于 85Vac-265Vac 全范围输 入电压的非隔离降压式 LED 恒流电源。M8918集成有 源功率因数校正电路,可以实现很高的功率因数和很 低的总谐波失真。由于工作在电感电流临界连续模式 ,功率 MOS 管处于零电流开通状态,开关损耗得以减

小,同时电感的利用率也较高。

M8918 内部集成500V功率MOSFET, 只需要很少的 外围器件,即可实现优异的恒流特性.

M8918 采用专利的浮地构架,对电感电流进行全周期采样,可实现高精度输出恒流控制,并达到优异的线电压调整率和负载调整率。

M8918 具有多重保护功能以加强系统可靠性,包括 LED 开路保护、LED 短路保护、芯片供电欠压保护、电流采样电阻开路保护和逐周期限流等。所有的保护状态都具有自动重启功能。另外,M8918 具有过热调节功能,在驱动电源过热时减小输出电流,以提高系统的可靠性。


特点

- 有源功率因数校正,高 PF 值,低 THD
- 内置500V 功率 MOSFET
- 高达 95%的系统效率
- ±3% LED 输出电流精度
- 优异的线电压调整率和负载调整率
- 电感电流临界连续模式
- 超低 (33uA) 启动电流
- 超低 (300uA) 工作电流
- LED 短路/开路保护
- 电流采样电阻开路保护
- 逐周期电流限流
- 芯片供电欠压保护
- 自动重启功能
- 过热调节功能
- 采用 SOP-8/DIP-8 封装

应用

- GU10/E27 LED 球泡灯、射灯
- LED PAR30、PAR38 灯
- LED 日光灯
- 其它 LED 照明

典型应用图

定购信息

定购型号	封装	温度范围	包装形式
M8918PR	DIP8	-40 ℃ 到105 ℃	2,000 颗/盒
M8918DR	S0P8	-40 ℃ 到105 ℃	2,500 颗/盘

管脚封装

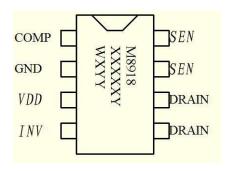


图 2 管脚封装图

管脚描述

管脚号	管脚名称	描述
1	COMP	环路补偿点
2	GND	芯片信号和功率地
3	VDD	芯片电源
4	INV	反馈信号采样端
5, 6	DRAIN	内部高压功率管漏极
7,8	SEN	电流采样端,采样电阻接在SEN和 GND 端之间

极限参数(注1)

符号	参数	参数范围	单位
V_{DS}	内部高压 MOSFET 漏极到源极的峰值电压	-0.3~500	V
$I_{ ext{DD_MAX}}$	VDD 引脚最大钳位电流	10	mA
COMP	环路补偿点	-0.3~6	V
INV	辅助绕组的反馈端	-0.3~6	V
SEN	电流采样端	-0.3~6	V
P _{DMAX}	功耗(注 2)	0. 45	W
Ө да	PN 结到环境的热阻	145	°C/W
T_{J}	工作结温范围	-40 to 150	$^{\circ}$ C
$T_{\mathtt{STG}}$	储存温度范围	-55 to 150	$^{\circ}$ C
	ESD (注 3)	2	KV

- 注 1: 最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数 规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。
- 注 2: 温度升高最大功耗一定会减小,这也是由 TJMAX,θ JA,和环境温度 TA 所决定的。最大允许功耗 为 PDMAX = (TJMAX TA)/θ JA 或是极限范围给出的数字中比较低的那个值。
- 注 3: 人体模型, 100pF 电容通过 1.5KΩ 电阻放电。

推荐工作范围

符号	参数	参数范围	单位
ILED1	输出 LED 电流@Vout=72V (输入电压 176V~265V)	<310	mA
ILED2	输出 LED 电流@Vout=36V (输入电压 176V~265V)	<420	mA
VDD	电源电压	8. 5 [~] 20	V

电气参数(注 4, 5) (无特别说明情况下, V_{DD} =17 V, T_A =25 ℃)

符号	参数描述	条件	最小值	典型值	最大值	单位
电源电压			1	1		
VDD_ON	VDD 启动电压	VDD 上升		18		V
VDD_UVLO	VDD 欠压保护阈值	VDD 下降		7.8		V
VDD_CLAMP	VDD 钳位电压			22		V
IDD_UVLO	VDD 关断电流	VDD 上升, VDD= VDD-ON- 1V		33	50	uA
IDD	VDD 工作电流	FOP=10KHz		300	500	uA
INV 反馈			<u> </u>			
VINV_FALL	INV下降阈值电压	INV 下降		0. 2		V
VINV_HYS	INV 迟滞电压	INV 上升		0. 15		V
VINV_OVP	INV 过压保护阈值			1.6		V
TON_MAX	最大导通时间			20		us
TOFF_MIN	最小关断时间			3		us
TOFF_MAX	最大关断时间			100		us
电流采样						
VSEN_LIMIT	SEN 峰值电压限制			1.0		V
TLEB_SEN	电流采样前沿消隐时间			350		ns
TDELAY	芯片关断延迟			200		ns
环路补偿			1			
VREF	内部基准电压		0. 194	0.2	0. 206	V
VCOMP_LO	COMP下钳位电压			1. 5		V
VCOMP	COMP 线性工作范围		1.5		3. 9	V
VCOMP_HI	COMP 上钳位电压			4.0		V
功率管 MOSFET		1				
RDS_ON	功率 MOSFET 导通电阻	VGS=10V/IDS=0		1.5		Ω

4/10 V1.0 版

符号	参数描述	条件	最小值	典型值	最大值	单位
BV _{DSS}	功率 MOSFET 击穿电压	V_{GS} =0V/ I_{DS} =250uA	500			V
${ m I}_{ m DSS}$	功率 MOSFET 漏电流	$V_{GS} = 0V/V_{DS} = 00V$			1	uA
过热调节部分						
T_{REG}	过热调节温度			150		$^{\circ}$

注 4: 典型参数值为 25℃ 下测得的参数标准。

注 5: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部结构框图

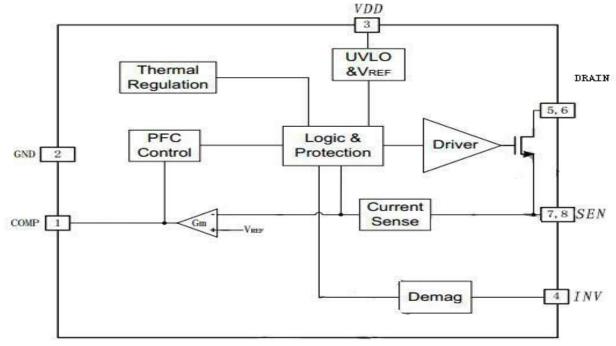


图 3 M8918 内部框图

应用信息

M8918 是一款內部集成) 00V 功率 MOSFET 的有源 功率因数校正 LED 恒流控制芯片,用于非隔离降 压型电路,系统工作在电感电流临界连续模式, 可以实现很高的功率因数、很低的总谐波失真和 高效率。

1 启动

在系统上电后,母线电压通过启动电阻给 V_{DD} 引脚的电容充电,当 V_{DD} 电压上升到启动阈值电压后,芯片内部控制电路开始工作,COMP 电压被快速上拉到 1.5V。然后 M8918 开始输出脉冲信号,系统刚开始工作在 10kHz 开关频率,COMP 电压从1.5V 开始逐渐上升,电感峰值电流随之上升,从而实现输出 LED 电流的软启动,有效防止输出电流过冲。当输出电压建立之后,V_{DD} 电压由输出电压通过二极管供电,从而降低系统功耗。

2 恒流控制,输出电流设置

M8918 采用专利的浮地构架,对电感电流进行全周期采样,工作于电感电流临界连续模式,可以实现高精度输出恒流控制。

LED 输出电流计算方法:

$$I_{OUT} \approx \frac{V_{\text{REF}}}{R_{SEN}}$$

其中,

V_{REF}是内部基准电压 RSEN 是电流采样电阻的

值 3 反馈网络

M8918 通过 INV 来检测输出电流过零的状态, INV 的下降阈值电压设置在 0. 2V,迟滞电压为 0. 15V。 INV 引脚也可以用来探测输出过压保护(0VP), 阈

6/10 V1.0 版

值为 1.6V。 INV 的上下分压电阻比例可以设置为:

$$\frac{R_{INVL}}{R_{INVL} + R_{INVH}} = \frac{1.6V}{V_{OVP}}$$

其中,

R_{INVL}是反馈网络的下分压电阻 R_{INVH}是反馈网络的上分压电阻 V_{OVP}是输出电压过压保护设定点 建议将 V_{OVP}设定在比最高带载电压高 30%倍左右。 推荐 INV 下分压电阻设置在 2KΩ —5KΩ 左右,并联 一个 22pF 左右的电容以防止开关噪声误触发 0VP。

4 过温调节功能

M8918 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为 150℃。

5 保护功能

M8918 内置多重保护功能,保证了系统可靠性。当

LED 开路时,输出电压逐渐上升,INV 引脚可以 在功率管关断时检测到输出电压。当 INV 升高到 0VP 保护阈值时,会触发保护逻辑并停止开关工作。

当 LED 短路时,系统工作在 10kHz 低频。由于输出电压很低,无法通过二极管给 V_D,供电,所以 V_D,电压逐渐下降直到欠压保护阈值。

系统进入保护状态后, VDD 电压开始下降, 当 VDD 到

达欠压保护阈值时,系统将重启。同时系统不断 的检测系统状态,如果故障解除,系统会重新开 始正常工作。

当输出短路或者变压器饱和时,SEN 峰值电压将会比较高。当 SEN 电压上升到内部限制值(1V)时,该开关周期马上停止。此逐周期限流功能可以保护功率 MOS 管、功率电感和输出续流二极管。

6 PCB 设计

在设计 M8918 PCB 板时, 需要注意以下事项:

旁路电容

地线

电流采样电阻的功率地线尽可能粗,且要离芯片的地(Pin2)尽量近,以保证电流采样的准确性, 否则可能会影响输出电流的调整率。另外,信号 地需要单独连接到芯片的地引脚。

Vnn的旁路电容需要紧靠芯片 Vnn和 GND 引脚。

7/10 V1.0 版

功率环路的面积.

减小大电流环路的面积, 如功率电感、功率

管、

母线电容的环路面积,以及功率电感、续流 二极

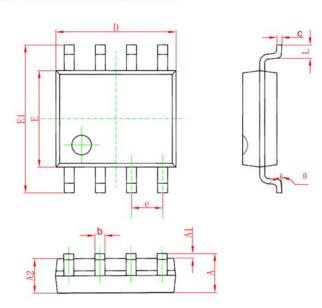
管、输出电容的环路面积,以减小 EMI 辐射。

INV

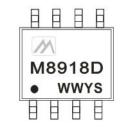
引

脚

接到 INV 的分压电阻必须靠近 INV 引脚,且 节点要远 离功率电感的动点(DRAIN 引脚走 线),否则系统 噪声容易误触发 INV OVP 保 护功能。

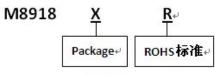

Drain 引脚

适当增加 Drain 引脚的铺铜面积以提高芯片散热。



封装信息

SOP8 PACKAGE OUTLINE DIMENSIONS



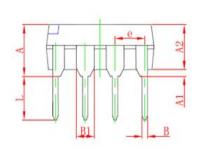
丝印描述

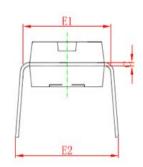
S: 内部编码→ **Y**: 年份代码→

WW: 周期代码↩

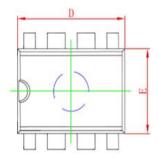
S: SOT-23-6₽

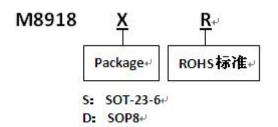
D: SOP8₽


P: DIP8₽


Symbol	Dimensions I	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
A	1.350	1. 750	0.053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1.550	0.053	0.061
b	0. 330	0. 510	0.013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3.800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

封装信息


丝印描述



S: 内部编码┵ Y: 年份代码┵ WW: 周期代码┵

P: DIP8₽

	Dimensions In Millimeters		Dimensions In Inch	
Symbol	Min	Max	Min	Max
Α	3. 710	4. 310	0.146	0. 170
A1	0.510	0	0. 020	
A2	3. 200	3. 600	0. 126	0. 142
В	0. 380	0. 570	0.015	0. 022
B1	1. 524	4 (BSC)	0.060 (BSC)	
С	0. 204	0. 360	0.008	0.014
D	9.000	9. 400	0. 354	0. 370
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
е	2. 540 (BSC)		0.10	0 (BSC)
L	3.000	3. 600	0.118	0. 142
E2	8. 400	9. 000	0. 331	0.354